0=-16x^2+160x+120

Simple and best practice solution for 0=-16x^2+160x+120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16x^2+160x+120 equation:



0=-16x^2+160x+120
We move all terms to the left:
0-(-16x^2+160x+120)=0
We add all the numbers together, and all the variables
-(-16x^2+160x+120)=0
We get rid of parentheses
16x^2-160x-120=0
a = 16; b = -160; c = -120;
Δ = b2-4ac
Δ = -1602-4·16·(-120)
Δ = 33280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{33280}=\sqrt{256*130}=\sqrt{256}*\sqrt{130}=16\sqrt{130}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-16\sqrt{130}}{2*16}=\frac{160-16\sqrt{130}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+16\sqrt{130}}{2*16}=\frac{160+16\sqrt{130}}{32} $

See similar equations:

| 2x+4-10x=5 | | 1/23a=7/8 | | 12p+50=26 | | (3x+4)³=2197 | | 0.2x-22=55 | | 484=x(x+33) | | 0.3x-55=55 | | 10/9x^2-20x+900=0 | | 10/9x-20x+900=0 | | 0.3x-55=35 | | -3r=5 | | 0.3x-55=45 | | 12w=2048 | | 72=(18-x)x | | 3x^2-32x+69=0 | | -8c+8=5c+2 | | 9x-10x+3=0 | | 3x=7x+1=2(5x+1) | | -27=5x+16 | | 104-x=12 | | 3x*4x=432 | | 8y-2=3y+8 | | x-20+76=360 | | (x-3)^2=75 | | 17x-1=7x+5x | | 8y+2y=96 | | (5z-1)^1/3=1 | | -18=-4x+3(x-4) | | 3/5x-(1/2x-2)=x+3/10 | | a+7=4a+6/2 | | (x^2)-9x+18=0 | | 2x+1x+16=40 |

Equations solver categories